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Abstract

Classical homogenization techniques are not designed to predict the e�ect of the size of the constituents on the

e�ective mechanical behaviour of heterogeneous materials. They usually take the volume fraction and, in some cases,

the morphology of phase distribution into account. This shortcoming is related to the fact that, in crystals, the

elastoviscoplastic behaviour of each constituent within the aggregate may be di�erent from that observed on the

constituent alone (say the single crystal). Cosserat single crystal plasticity is used in this work to describe the in¯uence of

grain size on the e�ective hardening behaviour of polycrystals. For that purpose, three-dimensional ®nite element

calculations of periodic Cosserat multi-crystalline aggregates of di�erent grain sizes are provided. The polycrystal is

regarded as a heterogeneous Cosserat medium and speci®c techniques for the estimation of the e�ective properties are

presented. The approach is then applied to the case of two-phase single crystal materials for which the behaviour of one

phase as a matrix turns out to be much harder than the isolated phase. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

E�cient homogenization techniques are available to derive the overall mechanical properties of heter-
ogeneous materials. They have been successful in describing the global response of non-linear composites
with almost periodic micro-structures as well as random materials such as polycrystals (Sanchez-Palencia
and Zaoui, 1985). However, several major features of materials micro-structure have been disregarded in
the previous analyses. In particular, the e�ective properties deduced from classical homogenization theories
do not depend on the absolute size of heterogenities but only on their volume fraction and, at best, on the
morphology of the constituents. In contrast, it is well known in experimental metallurgy that micro-
structures can be optimized for the desired overall non-linear properties by varying the size of inclusions or
grains. In the present work, we investigate how far the mechanics of generalized continua can help, by
including size e�ects into the framework of the mechanics of heterogeneous materials.
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Generalized continua can be classi®ed into three main groups. Higher grade media involve higher order
gradients of the displacement ®eld or of some internal variables. In the higher order media, independent
degrees of freedom are introduced in addition to the usual displacements. Fully non-local media are
characterized by an integral formulation of the constitutive equations (Eringen, 1976). In this work, at-
tention is drawn to the Cosserat continuum for which independent displacement u and micro-rotation U
degrees of freedom are attributed to each material point. The vector U describes the rotation of an un-
derlying tryad of rigid directors. Deformation and curvature tensors will be de®ned in Section 2, so that
there exist two associated stress tensors: the force-stress tensor r� and the couple-stress tensor l

�
. They are

not necessarily symmetric. Two balance equations must be ful®lled, namely the balance of momentum and
the balance of moment of momentum:

r� � $ � 0; rij;j � 0;

l
�
� $ÿ �' : r� � 0; lij;j ÿ �ijkrjk � 0;

�1�

where volume forces and couples have been excluded for simplicity. A complete account of the Cosserat
theory can be found in Eringen (1976) and a special case, the so-called couple-stress theory, has been ex-
tensively studied by Koiter (1963). The links between the Cosserat continuum and crystal plasticity are
presented in Section 2. The key argument is the introduction of the so-called dislocation density tensor
(Nye, 1953) into the traditional constitutive framework for single crystals as settled by Mandel (1965, 1971).
In other terms, this corresponds to a distinction in the set of internal variables between the densities of the
so-called statistically stored and geometrically necessary dislocations (Fleck and Hutchinson, 1997). An
extension of the classical multiplicative large deformation single crystal theory to the Cosserat framework is
recalled in Section 2.2, to insist on the natural de®nition of an intermediate released con®guration for both
force and couple stresses. The remainder of this work deals with the small perturbation framework. Some
applications of Cosserat crystal plasticity to localization phenomena have been reported in Forest (1998).
The aim of the present work is to show the ability of generalized single crystal plasticity to account for some
size e�ects in crystals.

The available computational tools are now su�cient to carry out ®nite element calculations on a volume
element of polycrystal containing enough grains to regard it as representative (Eberl et al., 1998). The main
advantage of this approach, in comparison with standard bounding or estimation techniques of homog-
enization, lies in the fact that it provides not only the e�ective response of the polycrystal but also an insight
into the heterogeneous intragranular stress-deformation state. The polycrystalline aggregates presented in
this work are simulated as Vorono�õ polyhedra and the corresponding ®nite element meshes are such that
each grain contains enough integration points to give a quite accurate description of the deformation
patterns within the grains. In this work, each grain is treated as a Cosserat single crystal so that the
polycrystal must be dealt with as a heterogeneous Cosserat aggregate. That is why the basic tools of ho-
mogenization theory must be extended to heterogeneous Cosserat materials. Some of them, including
average relations between local and global mechanical quantities, are presented in Section 3, namely an
extension of the Hill±Mandel approach and the case of periodic micro-structures. An extension of varia-
tional methods to derive bounds for the e�ective properties to generalized continua can be found in
Smyshlyaev and Fleck (1996), where a ®rst approach of grain size e�ects using strain gradient non-linear
elasticity has been proposed.

It is well known that the apparent yield strength r0 in tension of polycrystalline metals tends to increase
with decreasing grain size (Jaoul, 1965). The famous Hall±Petch relationship:

r0 � rm � kDÿ1=2; �2�
where D is the grain size, k a constant and rm an asymptotic yield stress for the single crystal, has been
checked in the case of b.c.c. crystals. For the f.c.c. crystals considered in this work, the polycrystal tends to
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behave like the most resistant single crystal orientation but the hardening capability of the polycrystal still
increases with decreasing grain size. Weng (1983) suggested to write relation (2) at the level of resolved shear
stresses of slip systems. He proposed a self-consistent scheme for polycrystalline elastoplasticity including
grain size e�ects. The in¯uence of the grain size on the hardening of the material was also introduced in a
somewhat more complicated expression than (2). Such a formulation seems to be legitimate in the case of
mean-®eld models such as the self-consistent one, for which the mean stress and strain over all grains having
the same orientation only is considered. If, in addition to this, one is interested in the intragranular stress±
strain distributions within a polycrystalline aggregate, relation (2) is not applicable any more in each ma-
terial point of each grain. The evolution of the critical resolved shear stresses will be di�erent in the core of
the grain, in the neighbourhood of grain boundaries or free surfaces. It is claimed in this work that some of
these features can be captured using generalized crystal plasticity. For this purpose, we will consider in
Section 4 an initial boundary value problem for an aggregate of Cosserat crystals with a varying grain size. A
rather small number of grains will be considered due to the large number of degrees of freedom and internal
variables associated with the Cosserat model. Periodicity has been retained for these simulations.

The proposed approach can in principle be applied to describe more general size e�ects than the pre-
viously mentioned grain size e�ects, and in particular to model composite material reinforcement by in-
clusions or precipitates of di�erent sizes in a metal matrix. The problem of precipitate hardening is
addressed in the last section of this work, with a speci®c example of two-phase nickel-based superalloys.
The use of generalized crystal plasticity in this case is relevant if hardening e�ects are due to the formation
of dislocation pile-ups at precipitates or, using another terminology, when the storage of geometrically
necessary dislocations near precipitates leads to additional hardening of the material. The fact that the
in situ behaviour of a constituent may be strongly di�erent from that of the bulk material is a major feature
of the mechanics of non-linear heterogeneous materials. The mechanics of generalized continua can help to
take this aspect into account. This is also the occasion of setting the limits of the approach, at the borderline
between discrete dislocation simulation and continuum mechanics.

In this work, a, a�; a' and a�denote respectively a vector, a second-rank, a third-rank and a fourth-rank tensor.

The nabla operator reads $. The gradient of the displacement ®eld is f� � u
 $ � ui;jei 
 ej, where feigi�1;2;3 is
an orthonormal basis and
 the dyadic product. The symmetric and skew-symmetric parts of f� are respectively
denoted f f�

g � e� and g f�
f. The indices notation is used when the intrinsic one may become ambiguous.

2. Cosserat single crystal plasticity

2.1. Overall description of dislocation populations

The yielding and hardening behaviour of crystals mainly depends on the growth of the dislocation
population and on the development of dislocation structures inside the volume element V of continuum
mechanics. A precise account of the evolution of dislocation distribution in V still lies beyond current
computing capacity, although promising results in that ®eld are available (Fivel and Canova, 1998). The
incomplete information about the dislocation state permits probability predictions and suggests the use of
statistical mechanics. Kr�oner (1969) proposed that the information be given in terms of n-point dislocation
correlation tensor functions. If the vectors n�x� and b�x� describe the line vector and Burgers vector of a
dislocation located at x, the ®rst correlation function reads:

a� � hb
 ni; �3�

where the brackets denote ensemble averaging. Then, the next correlation function is:

a
�
�x; x0� � h�b
 n��x� 
 �b
 n��x0�i � a

�
�xÿ x0� �4�
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if statistical uniformity is assumed. Second- and fourth-rank tensors a� and a
�

are indeed related to classical
plastic state indicators used in classical crystal plasticity. For a large enough volume element V, it is re-
sorted to the ergodic hypothesis so that ensemble averaging is replaced by volume averaging over V. In this
case, a� turns out to be identical to the so-called dislocation density tensor, or Nye's tensor, which is the
basic variable of the continuum theory of dislocations (Nye, 1953). On the contrary, one invariant of the
tensor a

�
can be shown to be

aijij�0� � L=V � q; �5�
where L is the length of dislocation lines inside V. The dislocation density q is well known in the ®eld of
metallurgy.

Modern crystal plasticity (Mandel, 1971) relies on the use of internal variables that are more or less
related to q rather than a�, and has proved to be e�cient in describing the main features of the deformation
behaviour of single crystals under tensile, shear and, to some extent, non-homogeneous loading conditions.
Quantities a� and q are independent moments of the same distribution and, in principle, should both enter
the constitutive framework (Forest et al., 1997). The dislocation density tensor can be related to the plastic
incompatibility by

a� � ÿcurl� f�
p � ÿ�jklf

p
ik;lei 
 ej; �6�

where f� � f�
e � f�

p has been decomposed into elastic and plastic parts (Kr�oner, 1958). It means that, if a� is
introduced as an additional internal variable in the constitutive theory of crystals, it will have a non-local
character as is related to the gradient of the plastic deformation. Such a theory has been used in Dai and
Parks (1997). In this case, the mechanical framework remains classical and the thermodynamical force
associated with a� does not enter the mechanical balance equations. A perhaps more ambitious approach,
presented in Shu et al. (1996) and Fleck and Hutchinson (1997), consists in acknowledging the fact that,
once a variable such as a� is introduced, the material cannot be regarded as simple any more. For com-
pleteness, e� 
 $ or equivalently the second gradient of the displacement ®eld should be introduced, which
leads to a full second grade medium (Germain, 1973). The authors Shu et al. (1996) and Fleck and
Hutchinson (1997) then propose a full constitutive framework for elastoplastic second grade single crystals.
In particular, a generalized criterion and ¯ow rules are postulated.

On the contrary, Eq. (6) can be rewritten in terms of the gradient of lattice rotation:

a� � j�
T ÿ �tr j��1� � cu�rl e�

e; �7�

where e�
e �f f�

eg. Setting its skew-symmetric part g f�
ef � ÿ�

g
�U, the lattice torsion curvature is de®ned by

j� � U
 $ � Ui;jei 
 ej: �8�

The manifestation of a� turns out to be the existence of lattice curvature which can be decomposed into
elastic and plastic parts j�

e and j�
p. The thermodynamic force associated with j�

e is a couple-stress tensor that
can in¯uence the equilibrium state of the solid and should therefore enter the equation of balance of
moment of momentum of the medium. This can be done within the framework of the Cosserat theory. The
motivations and developments of the theory can be found in Forest et al. (1997). Again, a full constitutive
framework including evolution rules for plastic curvature has been postulated and is brie¯y recalled in
Section 2.2.

2.2. General framework

Cosserat single crystal elastoviscoplasticity represents a generalization of the anisotropic plasticity
framework settled by Mandel (1973). In particular, it can be formulated for arbitrary deformation, micro-
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rotation and torsion-curvature. The independent degrees of freedom are the displacement u�x; t� and lattice
rotation R��x; t�, meaning that a tryad of rigid vectors is attached to each material point. The vectors are
supposed to coincide at each time with the same lattice vectors in the released con®guration at point x. The
di�erent con®gurations are de®ned in Fig. 1 (Sievert et al., 1998).

The deformation gradient F� and the lattice torsion-curvature tensor C� are de®ned by

F� � 1� � u
 $ � �dij � ui;j�ei 
 ej and C� � 1
2
�' : �R��R�T 
 $�� � 1

2
�iklRkmRlm;jei 
 ej: �9�

Note that the previously de®ned tensor j� corresponds to the small perturbation approximation of C� . When
written in the space frame associated with R��x� at point x, it reads:

]F� � R�
TF�;

]C� � R�
TC�: �10�

Deformation and curvature can be decomposed into their elastic and plastic parts as follows:

]F� � ]F�
e]F�

p and ]C� � ]C�
e]F�

p � ]C�
p: �11�

These two decompositions enable us to de®ne an intermediate con®guration for which both force and
couple stresses are released (Sievert et al., 1998).

In the case of small micro-rotations and small curvatures, the lattice rotation vector U and the torsion-
curvature tensor are de®ned by:

R� � 1� ÿ e
g
�U and j� � U
 $ � j�

e � j�
p: �12�

Similarly, within the small perturbation framework, an adequate Cosserat deformation measure reads

e� � u
 $� �
g
�U � e�

e � e�
p �13�

The elasticity law in the isotropic case is given as

r� � E� : e�
e � k1�Tr e�

e � 2lfe�
eg � 2lc

ge�
ef; �14�

l
�
� C� : j�

e � a1�Trj�
e � 2bfj�

eg2cgj�
ef; �15�

which involves six elasticity moduli, the two classical ones and four additional ones. Plastic deformation is
due to the activation of slip systems according to

_e�
p �

Xn

s�1

_csP�
s; �16�

Fig. 1. Kinematics of Cosserat single crystal plasticity.
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where the so-called orientation tensor P�
s is de®ned by

P�
s � ms 
 ns: �17�

This corresponds to multi-mechanisms plasticity for which a general framework has been settled by Koiter
(1960) and Mandel (1965). Vector ms and ns, respectively, are the slip direction and the normal to the slip
plane for slip system s. Similarly, plastic torsion-curvature orientation tensors Q?�

and Q��
exist such that

_j�
p �

Xn

s�1

_hs
?

l?
Qs
?�

 
�

_hs
�

l�
Qs
��

!
; �18�

where l?, l� are constitutive characteristic lengths. The index ? denotes the lattice curvature due to edge
dislocations and � indicates the lattice torsion due to screw dislocations. The continuum theory of dis-
locations provides a relation between the dislocation density tensor and the torsion-curvature tensor as in
Eq. (7) (Forest et al., 1997), from which we deduce

Qs
?�
� ns 
ms; Qs

��
� 1

2
1� ÿms 
ms; �19�

where ns� ns �ms is the edge dislocation line vector. In this work, the additional internal variables hs
? only

are taken into account and the length l? will be called lp in the sequel.

2.3. Identi®cation of material parameters

Eqs. (16)±(18) describe the kinematics of elastoplastic Cosserat crystals. The set of equations must be
closed by the ¯ow rules and hardening laws. To avoid any indeterminancy in slip activation, a formulation
in viscoplasticity is adopted:

_cs � jssj ÿ rs

k

� �n

sign�ss� and _hs � jmsj ÿ lprs
c

lpks
c

� �ns
c

sign�ms�; �20�

where ss � P�
s : r�

s and ms � Q
�

s : l
�

s, respectively, are the resolved force and couple stresses on the slip and
curvature system s. The quantities in brackets must be positive for the slip and plastic curvature rate to be
non-zero. Eq. (20) corresponds to a generalized Schmid law. Parameter k (resp. n) can be chosen low (resp.
large) enough for plastic ¯ow to be almost rate independent.

The evolution rules for the thresholds rs and rs
c used in this work are the following:

rs � r0 � q
Xn

r�1

hsr�1ÿ exp�ÿbvr�� � H 0jhsj with _vs � j _csj; �21�

rs
c � rc0:

The interaction matrix hrs accounts for self- and latent hardening. The threshold for the plastic curvature is
taken to be constant for simplicity. A simple linear coupling term H 0 is added to more conventional non-
linear contributions.

The classical parameters r0, hrs, q and b can be derived from homogeneous monotonous tests. The
additional parameters are a; b; c; lc for elasticity and rc0;H 0 and lp for plastic curvature. Kr�oner (1963)
derived the ¯exural rigidity of a crystal element containing a regular lattice of edge dislocations. The
bending modulus is found to be proportional to ld2, where d is half the edge dislocation spacing. We will
use very small values of a and b � c (as in De Borst, 1991) that correspond to a large enough amount of the
so-called geometrically necessary dislocations inside V. We will then assume that the elastic response of the
crystal does not signi®cantly deviate from the classical one and, in particular, that elastic rotations are
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material rotations. It means that ee
� is not far from being symmetric. This can be achieved using a large lc

parameter. This corresponds to the constrained Cosserat elasticity or to Koiter's couple-stress theory
(Koiter, 1963) as long as the material behaviour remains elastic. Once yielding has begun, lattice rotations
deviate from material rotations represented by the skew-symmetric part of f�. As a result, the proposed
theory departs from the fully constrained Cosserat theory or couple-stress theory, for which the micro-
rotation vector U is nothing but the rotation vector associated with skew-symmetric part of the defor-
mation gradient. A low threshold for plastic curvature has been chosen so that the remaining coe�cients to
be determined are H 0 and lp. Note that in fact the combination H 0lp (unit MPa m) only is relevant and that
the choice of the characteristic length lp becomes conventional. The coupling parameter H 0 plays a role,
when lattice rotation gradients develop and can be identi®ed only under such circumstances. Strain lo-
calization phenomena represent situations for which such coupling becomes essential. Slip, shear and kink
banding has been studied using this Cosserat model in Forest (1998), and it has been suggested that the
measurement of the width of kink bands in single crystals enables one to determine H 0lp. In this work,
alternative situations are presented that permit its determination, namely, those associated with size e�ects
in crystals. In particular, it will appear in the sequel that the in¯uence of grain size on the overall me-
chanical response of polycrystals can be described using the coupled hardening law (21). Non-linear
coupling terms should also be considered.

3. Overall behaviour of heterogeneous Cosserat materials

The polycrystal can now be regarded as a heterogeneous Cosserat material as it is an aggregate of
Cosserat single crystal grains. As a result, some homogenization procedures must be designed to study the
resulting properties of the polycrystal. Some estimation methods have been proposed in Dendievel et al.
(1998) and applied in the case of the heterogeneous linear Cosserat elasticity.

3.1. Homogenization methods for Cosserat materials

3.1.1. Hill±Mandel approach
The aim is to replace a heterogeneous material by a homogeneous substitute medium (HSM), which can

be said to be equivalent in the sense to be made precise. Following Hill±Mandel's approach of the me-
chanics of heterogeneous materials (Sanchez-Palencia and Zaoui, 1985), a condition of macro-homogeneity
is required stipulating that the (isothermal for simplicity) free energy of the HSM at point x can be
identi®ed to the mean value of the free energy over a representative volume element V under the same
overall loading conditions at x. In the case of heterogeneous Cosserat materials for which the local ®elds are
e�; j�; r� and l

� inside V, this condition can be generalized in the following forms: If the overall substitute
medium (to be used for structural calculations for instance) is treated as Cauchy continuum, the condition
reads:

hr� : e� � l
�

: j�i � R� : E� ; �22�

where E� and R� are the e�ective (symmetric) deformation and stress tensors. If the HSM is regarded as a
Cosserat continuum itself, it becomes

hr� : e� � l
�

: j�i � R� : E� �M� : K� ; �23�

where K� and M� are e�ective curvature and couple-stress tensors, E� and R� being not necessarily symmetric
any more. Procedure (23) is of course more general and contains Eq. (22) as a special case to which it
reduces if the e�ective characteristic length is very small.
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The determination of the e�ective properties then goes through the resolution of a boundary value
problem on V. Boundary conditions on oV must then be chosen that automatically ful®ll conditions (22) or
(23). In Dendievel et al. (1998), we have proposed a simple generalization of classical homogeneous con-
ditions at the boundary:

u � E� � x and U � K� � x 8x 2 oV ; �24�

where E� and K� are given and constant. It follows that

E� � hu
 $i and K� � hj�i: �25�

Condition (23) is then automatically satis®ed for the following de®nition of the e�ective stress tensors:

R� � hr�i and M� � hl� � ��' : r�� 
 xi � hlij � �imnrmnxjiei 
 ej: �26�

This homogenization procedure has also been proposed in De Felice and Rizzi (1997).

3.1.2. Asymptotic methods
In the case of periodic micro-structures, a unit cell V can be de®ned and asymptotic methods are well

adapted for deriving the form of the e�ective balance and constitutive equations (Sanchez-Palencia, 1974).
The key point is the choice of the small parameter e introduced in the multi-scale asymptoic developments.
Two di�erent schemes have been proposed in Forest and Sab (1998) for periodic heterogeneous Cosserat
media. Three characteristic lengths must be distinguished: the size l of the unit cell V, a typical characteristic
length lc of the constituents of the heterogeneous Cosserat material, and a typical wavelength Lx associated
with the applied loading conditions. In the classical homogenization theory, one usually speaks of slowly
varying the mean ®elds when l� Lx and, in this case, the small parameter is e � l=Lx. In the present
situation, one may ®rst consider a limiting process HI with e! 0, for which the Cosserat length scale varies
in the same way as l, so that the small parameter can also be written e � lc=Lx. In this case, the e�ective
medium can be shown to be a Cauchy continuum (Forest and Sab, 1998). According to a second limiting
process HII, lc is kept constant, which corresponds to e � l=lc. The main ®elds are now treated as functions
of the two variables x and y � x=e. The local ®elds can be expanded in power series of e,

ue�x� � u0�x; y� � eu1�x; y� � e2u2�x; y� � � � � ; �27�

Ue�x� � U0�x; y� � eU1�x; y� � e2U2�x; y� � � � � ; �28�
where the ui and Ui are assumed to have the same order of magnitude and are periodic in y. Similar ex-
pansions exist for the force and couple stresses:

r�
e�x� � r�

0�x; y� � er1�x; y� � e2r�
2�x; y� � � � � ; �29�

l
�

e�x� � l
�

0�x; y� � el1�x; y� � e2l2�x; y� � � � � : �30�

The form of the constitutive equations is di�erent for each homogenization procedure and in the case of
linear elasticity (Forest and Sab, 1998), they read:

HI : r�
e � D

�
�y� : e�

e�x� and l
�

e � e2C
�
�y� : j�

e�x�; �31�

HII : r�
e � D

�
�y� : e�

e�x� and l
�

e � C
�
�y� : j�

e�x�: �32�
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After noting that $ � $x � 1=e$y (with obvious notations), we compute the gradient of the kinematic
variables and the divergence of the stresses in order to introduce them in the balance equations (1) and in
the constitutive equations. Ordering the terms according to e leads to a set of equations from which a series
of auxiliary boundary value problems to be solved on the unit cell can be de®ned (see Boutin (1996) for a
classical case). The ®rst auxiliary problem for the procedure HII consists in determining vector ®elds v and
w such that:

u � E� � y� v and U � K� � y� w 8y 2 V ; �33�

r� � D
�

: �u
 $y� and l
�
� C
�

: �U
 $y�; �34�

r� � $y � 0 and l
�
� $y � 0; �35�

where v and w take the same values on opposite sides of the cell and the traction and surface couple vectors
r� � n and l

�
� n are anti-periodic. The solution of this problem gives in fact the terms u1;U1, r�

0 and l
�

0 of the
expansion. This leads to the following expression of the mean work of internal forces:

hr� : e� � l
�

: j�i � hr�i : hu
 $i � hl
�
i : hj�i; �36�

which de®nes the e�ective deformation, curvature, force and couple-stress tensors. The e�ective medium
then is a Cosserat continuum.

3.1.3. Retained approach for non-linear multi-phase materials
The polycrystal is a heterogeneous material with a disordered distribution of phases, each phase being a

crystal orientation, and Hill±Mandel approach has proved to be e�cient for deriving e�ective properties in
such cases (Sanchez-Palencia and Zaoui, 1985). However, this requires computations on a large repre-
sentative volume element V containing many grains. Such aggregates have already been computed in
classical crystal plasticity (Eberl et al., 1998). But for Cosserat materials, the number of degrees of freedom
and internal variables increases drastically in the three-dimensional case so that we will work here on a
smaller sample of grains. In the latter case, periodic boundary conditions will induce less pronounced
boundary e�ects than the Dirichlet conditions (24). This is why a mixed approach of Hill±Mandel and
periodic ones is retained here, combining the periodic scheme HII and unaltered local constitutive equa-
tions as in Section 3.1.1 and thus di�erent from Eq. (34). It has been shown numerically in Forest and Sab
(1998), at least in the case of linear elasticity, that the approach HII works well even if lc � l, which will be
the case in Sections 4±6.

Accordingly, the following initial boundary value problem P is considered in a single unit cell V:

u � E� � x� v; U � K� � x� w;

constitutive equations;

r� � $ � 0; l
�
� $ÿ �' : r� � 0;

�37�

where v (resp. w) takes the same value on opposite sides of the cell. The traction and surface couple vectors
of two homologous points on opposite sides of V are the opposite. This problem is solved in a single cell V
and no attempt is made to extrapolate the solution in a regular solution on the entire body, although it may
be possible in particular for symmetric E� or R� and vanishing K� .
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3.2. Finite element implementation of Cosserat periodic conditions

To solve the boundary value problem P, a speci®c element has been implemented in the object-oriented
®nite element code Z�eBuLoN (Besson and Foerch, 1997). It represents a generalization of the classical
periodic element proposed in D�ebordes et al. (1985) to the case of periodic Cosserat media. The case of non-
periodic Cosserat media has been treated in De Borst (1991, 1993). Two (resp. three) translational and one
(resp. three) rotational degrees of freedom v and w are attributed to each node of the ®nite element mesh in
the two (resp. three)-dimensional case. Furthermore, a set of elements (in practice the whole mesh) shares
seven (resp. 18) additional degrees of freedom that are the given tensors E� and K� . A 7� �7� 3N� (resp.
18� �18� 6N�� matrix [B] connects the vector of degrees of freedom fdofg to the generalized deformation
vector{e}:

feg � �B�fdofg; �38�

where

feg � �e11 e22 e33 e12 e21 j31 j32�T; �39�

fdofg � �E11 E22 E33 E12 E21 K31 K32 v1 v2 w3 � � ��T; �40�

�B� � �I7� �0�
�0� �b�T

� �
with �b� �

o
ox 0 0 o

oy 0 0 0

0 o
oy 0 0 o

ox 0 0

0 0 0 1 ÿ1 ln
o
ox ln

o
oy

264
375 �41�

in the two-dimensional case (plane strain), N being the number of nodes in the element. The 7� 7 identity
matrix is denoted by [I7]. The normalization length ln has a priori the same order of magnitude as lc and
can help in better conditioning of the rigidity matrix.

Elastoviscoplastic constitutive equations as presented in Sections 2.2 and 2.3 enable one to compute the
generalized stress vector:

frg � �r11 r22 r33 r12 r21 l31 l32�T: �42�

To deal with single crystals, a three-dimensional formulation has been implemented. The resolution is
based on the discretization of the weak formulation of equilibrium:

Z
V
�r� : _e� � l

�
: _j��dV �

Z
V
�f � _u� c � _U�dV �

Z
oV
�t � _u�m � _U�dS �43�

for all virtual ®elds _u and _U, and where volume forces and micro-couples, and surface tractions and couples
may be applied.

The main advantage of introducing additional degrees of freedom associated with the mean deformation
E� and mean curvature K� , is that the associated reactions simply are the mean stresses R� and M� , so that
mean stress-controlled tests can be simulated as well as mean deformation tests. Mixed conditions are
therefore also possible.
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4. Grain size e�ects in polycrystal plasticity

4.1. On periodic polycrystalline aggregates

Polycrystalline aggregates containing a large number of grains have been studied in Cailletaud and
Quilici (1997) and Eberl et al. (1998), in order to analyse precisely the intragranular stress-deformation state
inside a representative volume element V within the framework of classical crystal plasticity. For this
purpose, homogeneous Dirichlet boundary conditions have been used. If V contains a large enough number
of grains, the overall response is found to coincide with the prediction of a self-consistent polycrystal model
(Quilici et al., 1998). Parallel computing is necessary to deal with representative samples of polycrystalline
material. The so-called multi-phase element technique is used, where each integration point of the FE mesh
is given the particular properties of the grain it belongs to. More precisely the single crystal model described
in Section 2.2 is used at each integration point with the crystallographic orientation of the corresponding
grain in the polycrystalline material. The de®nition of the micro-structure is based upon a synthetic
polycrystalline aggregate generated by disposing nucleation points in a cube of unit length and applying an
isotropic growth law to obtain an equiaxed micro-structure (Vorono�õ polyhedra) (Decker and Jeulin, 1998).
The distribution of nuclei follows a Poisson distribution. Decker and Jeulin (1998) have also added to the
previous polycrystal generation procedure the constraint that the distribution be periodic. It means that
grains crossing the boundary of the cube are in correspondence on opposite faces (Fig. 2).

In this section, we investigate aggregates of Cosserat grains with a rather small number of grains so that
we can resort to sequential calculations. Periodicity conditions are prescribed on both the micro-structure
geometry and on the mechanical quantities v and w (boundary value problem P). Samples of 10 grains are
considered using a 10� 10� 10 linear element mesh. This leads to a number of about 800 Gauss points per
grain that is su�cient for a realistic approximation of the 3D stress±strain gradients inside each grain. This
is an upper limit for sequential computation on a workstation using the Cosserat model.

Instead of constructing the e�ective response of a polycrystal using a large volume V containing many
grains, it is possible to study several samples including a smaller number of grains with periodicity

Fig. 2. Two successive slices of a three-dimensional polycrystalline aggregate and the associated mesh using the multi-phase element

technique; note the periodicity conditions.
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conditions. A mean response over a large enough number of realizations can be computed and regarded as
an estimation of the ensemble average of the studied mechanical quantity. According to the ergodic hy-
pothesis, the two approaches should coincide. The quality of the estimation depends on the number of
realizations and on the number of heterogeneities considered in each sample. This approach is similar to the
treatment of macro-heterogeneous solids proposed in (Huet, 1990). A sample of 10 grains may then provide
only a lower bound for the overall response. Alternatively, each periodic aggregate of 10 grains can be
regarded as a very special polycrystalline material for which we obtain the exact e�ective response.

In this work, we are interested in the response of polycrystals to classical loading conditions, such as
prescribed symmetric mean deformation or stress. In all calculations presented, the mean curvature K� is set
to zero. In the case of a tensile test, the component E33 is prescribed,

P
33 is computed and the remaining

components of R� vanish. It is often advocated that the additional boundary conditions that arise in
structural calculations involving generalized continua, are di�cult to set. In the case of single crystals,
direct control of lattice rotation is impractical. In contrast, periodic conditions on w in problem P are
natural.

4.2. Finite element analysis

The following series of systematic calculations have been carried out. A cube is considered that contains
10 grains with approximately the same size and shape. One special orientation is attributed to each grain
according to a random process. Two samples A and B have been generated with two di�erent geometry and
orientation distribution. The orientations A and B are given on Fig. 3. The material behaviour of each grain
is described by the set of constitutive equations of Cosserat elastoviscoplasticity given in Sections 2.2 and
2.3. Table 1 gives the values of the material parameters for the simulation. They have been retained for
illustration only, but they correspond to the behaviour of the polycrystalline alloy IN600. F.c.c. crystals are
considered and the 12 octahedral slip systems f111g h011i are taken into account. The parameter H 0

entering the hardening rule (21) has been arbitrarily set to 10000 MPa and lp to 0.1 mm. The edge length d
of the cube is varied in this study. For a given polycrystalline sample (A or B), the grain geometry, the
number of grains, the initial orientation of the grains and the material parameters are kept constant,
whereas the absolute size d of the aggregate and therefore the grain size varies from one simulation to the

Table 1

Material parameters used for the simulation of grain size e�ects in polycrystals (the classical parameters and the speci®c Cosserat

parameters have been separated)

E (MPa) m r0

(MPa)

q (MPa) b hij k

(MPa1=n)

n lc

(MPa)

b
(MPa m2)

r0c

(MPa)

H0

(MPa)

lp

(mm)

kc

�MPa1=nc �
nc

196 000 0.3 111 35 7 1 10 20 500 000 0.0001 10±6 10 000 0.1 0.1 1

Fig. 3. Stereographic projections of the tensile axis in the 10 grains of samples A (left) and B (right).
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other. In particular, parameter H 0 is regarded as a material parameter and will not be changed when
changing the size of the cube: its value determines the minimum grain size for which Cosserat e�ects will
arise. It should be ®tted once for all on experimental responses including several grain sizes.

A large spectrum of grain sizes has been explored ranging from d � 1lm to d � 1mm. The in¯uence of
grain size on the overall mechanical response of the aggregate A and B in pure tension is ®rst investigated.
Results are reported in Fig. 4(a) and (b) for samples A and B. For d greater than 1 mm, the response is not
a�ected and corresponds to that of a classical Cauchy material: no Cosserat e�ect arises. For smaller grain
sizes, the material can harden substantially more than for the classical case. For very ®ne grains, a very
strong additional hardening is obtained. This additional hardening is attributed to the coupling term driven
by parameter H 0 and can be understood as follows: The threshold of micro-plasticity is the same for all
grain sizes, so that the local ®elds are comparable at the very beginning of plastic ¯ow. In particular, lattice
rotations are ®rstly very similar but lattice curvature strongly di�ers due to the di�erent value of distances
associated with absolute coordinate x. The greater the plastic curvature j�

p, the smaller is the grain. Plastic

Fig. 4. Tensile tests on a periodic polycrystalline aggregate for di�erent grain sizes: (a) sample A, (b) sample B.
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curvature is related to the ratio hs=lp via Eq. (18). Since lp is kept constant, the internal variable hs is bigger
for small grains and hence the contribution H 0hs is stronger and may become predominant. The key point in
the analysis is the ratio of the relative contributions of the term q

Pn
r�1 hsr�1ÿ exp�ÿbvr�� and the term

H 0jhsj in the hardening rule (21). When d is much greater than lp, plastic curvature and therefore the
variable hs are very small so that the additional term provides a negligible contribution. In contrast, for
d � lp and d < lp, the contribution of geometrically necessary dislocations becomes predominant, as ex-
plained above. E�ects due to local plastic curvatures seem to a�ect the hardening behaviour of the material
only and not the apparent initial yield strength. However, for a high parameter H 0, the overall response
mimics elasticity. The use of a non-linear coupling term would then allow the simulation of a subsequent
non-linear response. It means that the proposed framework can account for a dependence of both the
hardening behaviour and the initial apparent yield strength of polycrystalline aggregates on grain size. The
simulations on sample B con®rm the previous analysis and the e�ects observed on the overall response have
the same order of magnitude. The e�ect of grain size on the overall behaviour may also depend on the
loading conditions. In Fig. 5, we consider a test for which all components of the mean deformation tensor
are prescribed and are proportional to

E33 � 1; E11 � E22 � ÿ0:5;

the remaining components being set to zero. The elastic response of the material here is compressible, so
that these loading conditions result in higher stress values and triaxiality. The obtained results are similar to
that in pure tension.

To quantify the hardening e�ect of the grain size, we plot log�R33 ÿ R0) versus log(d) in Fig. 6 for the
three investigated cases. For a given value, E33; R0 denotes the stress response of the size-independent
classical material. Note that the response of the classical medium is slightly lower than the response of the
Cosserat medium with large grains, this is due to the in¯uence of the coarse mesh. The curves obtained over
a large range of grain sizes can almost be described by a straight line of slope between ÿ0:7 and ÿ0:4. This
scaling turns out to be compatible with a Hall±Petch type relation. It must be noted that this non-linear
relationship between additional hardening and grain size is obtained using a linear Cosserat coupling term.
The non-linearity stems from plastic curvature distribution inside the grains (Fig. 7(d)). Fig. 7(a) shows a
slice of sample A where six grains can be observed. The plastic deformation and lattice rotation patterns of
Fig. 7(b) and (c) cannot be simply related to the grain distribution. In contrast, the contour of plastic
curvature suggests that plastic curvature does not develop in the core of the grain but at the grain
boundaries (Fig. 7(d)). This is compatible with the fact that lattice rotations are quite homogeneous in the
core of the grain (Fig. 7(c)) and become heterogeneous near the grain boundaries. However, computations

Fig. 5. Deformation controlled tests on a periodic polycrystalline aggregate for di�erent grain sizes (sample A).
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with a ®ner mesh must be carried out to con®rm this feature of grain plasticity. The e�ect of grain size on
the local ®elds is shown in Fig. 8. The three-dimensional plastic deformation state of aggregate A is given
for a mean value E33 � 0:0045 for two di�erent grain sizes. At the early stage of deformation, the shape of
the plastically activated grains can be recognized. The maximum plastic deformation reached locally for
d � 0:005 mm is almost twice less than for d � 0:1 mm. This results in a very di�erent partition of total
deformation into elastic and plastic parts, in both cases.

5. Towards a ®eld theory of precipitate hardening

Homogenization methods are of no help to predict the e�ective elasticity constants of an alloy made of
elements A and B, from the knowledge of the elastic properties of A and B alone and of the composition of
the alloy. This is the realm of physical metallurgy and the adequate numerical tool rather is atomic sim-
ulation. In the same way, the description of precipitate hardening does not fall a priori into the ®eld of
continuum mechanics. However, when the material contains large enough precipitates or inclusions, the
hardening e�ect may involve a large enough amount of dislocations for non-local continuum plasticity to
become applicable. A two-dimensional example of the transition from discrete dislocation dynamics to
continuum plasticity has been provided in Cleveringa et al. (1998). The size of c0 precipitates in nickel-based
single crystal superalloys lies in a range for which discrete methods require a tremendous computational
e�ort and generalized continuum crystal plasticity may start to be applicable.

5.1. On the modelling of two-phase single crystal nickel-based superalloys

Nickel-based single crystal superalloys for high temperature applications contain a large volume fraction
of coherent c0 precipitates in a matrix of disordered phase c. Espi�e (1996) has been able to grow single
crystals made of the phase c alone and could study their mechanical properties. The c phase turns out to be
very soft at a high temperature, as shown in Fig. 9(a). The high volume fraction of c0 precipitates confers a
very strong reinforcement to the alloy until they are sheared by dislocations. Several micro-mechanical
models have been proposed to reconstruct the behaviour of the heterogeneous material starting from the
knowledge of the mechanical response of each individual phase. A self-consistent scheme has been pro-
posed in Forest and Pilvin (1996), whereas periodic homogenization has been resorted to in Nouailhas and

Fig. 6. Relationship between stress and grain size at a given prescribed E33 � 0:0045 strain and for pure tensile test and tests with a

controlled mean deformation (called here ``extension'').
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Cailletaud (1995, 1996). Both approaches fail to predict the yield stress of the material (see Fig. 9(a)). The
reason simply is that the dislocation behaviour in the narrow channels of the c matrix dramatically di�ers
from the plastic behaviour of the bulk c phase. This is of course a well-known metallurgical fact and the
increase of the e�ective yield stress can be correctly estimated by a Orowan-type contribution proportional
to the inverse of the matrix channel width. Accordingly, Espi�e (1996) modi®es the local hardening rule of
phase c as follows:

Fig. 7. Section of a periodic polycrystalline aggregate: (a) grain distribution, (b) equivalent plastic strain ®eld, (c) norm of the lattice

rotation vector ®eld and (d) equivalent plastic curvature.
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rs � r0 � a
C44b

d
� q
X

r

hsr�1ÿ eÿbvr�; �44�

where b is the norm of Burgers vector, C44, the shear modulus of cubic elasticity and a, a material parameter
to be ®tted. However, the Orowan contribution mainly has a macroscopic meaning and, in principle, should
not be applied indi�erently at each position in the c-channels in a unit cell calculation. In contrast, here we
propose to use Cosserat plasticity and to investigate whether the plastic curvature in the c-channels is
su�cient to account for the observed apparent higher strength.

5.2. Tensile behaviour

The tensile behaviour of c=c0 single crystal superalloy AM1 in direction [0 0 1] is ®rst investigated using
periodic homogenization. The precipitates have a cuboidal shape and only one-eighth of the entire unit cell
is necessary (Fig. 9(b)). The dimensions of the cell correspond to the actual mean precipitate sizes in AM1:
0.56 lm-long precipitate edges and 0:08 lm-wide channels. The actual rounded shape of the corners of the
cubes has been taken into account, although a rather coarse mesh is used that permits sequential three-
dimensional calculations with the Cosserat model. The material parameters used for each phase are listed in
Table 2. The parameters of c are exactly the same as for the bulk material and have been deduced from
tensile tests (Espi�e, 1996). The coupling term H 0 of Cosserat plasticity does not in¯uence the homogeneous
tensile response but will play a major role when c is inhomogeneously strained in the channels. At the
considered temperature of 950°C, the mechanical behaviour of the material is highly viscoplastic. Octa-
hedral slip systems only have been retained, although cubic slip plays a major role in particular for tensile
tests in direction h111i (Nouailhas and Cailletaud, 1995; Espi�e et al., 1995). Climb processes are signi®-
cantly active at high temperature, and they are not taken into account from the crystallographic point of
view here but via the viscosity parameters. For simplicity, the same elastic properties have been attributed
to each phase and the mis®t between the two coherent phases has been neglected. The c0-phase is regarded

Fig. 8. Deformation controlled test on a periodic polycrystalline aggregate for di�erent grain sizes (sample A): Cumulative plastic

deformation for (a) d � 0:1 mm, (b) d � 0:005 mm.
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as shearable only for a high critical resolved shear stress. This is assumed to be the reason for the softening
observed on the experimental curve of Fig. 9(a). Whereas the parameter H 0 has been kept constant in the
analysis of di�erent grain sizes in Section 4, here we study the in¯uence of H 0 on the additional hardening
obtained for a ®xed size of the micro-structure.

Fig. 10 shows that for su�ciently high values of H 0, there is enough plastic curvature in the phase c to
make the overall response look like elasticity until high stress levels, although the threshold of micro-
plasticity in c remains unchanged. Due to the choice of a linear coupling term, the apparent elastic response
stopped only with the yielding of the c0 phase. The value of H 0 found to account for the experimental data
seems to be very high and perhaps unrealistic. It suggests that the lattice curvature in the matrix channel is
an important point to explain the reinforcement in the c=c0 but may not be the only one. At the beginning

Table 2

Material parameters for the c and c0 phases used in the simulation of the behaviour of Ni-based single crystal superalloys

C11

(MPa)

C12

(MPa)

C44

(MPa)

r0

(MPa)

q (MPa) b hij k

(MPa1=n)

n lc (MPa) b

(MPa m2)

r0c

(MPa)

H0

(MPa)

lp (mm) kc

�MPa1=nc �
nc

c 137 000 78 000 111 000 36 5.2 5800 dij 190 5 1 000 000 0.00001 10ÿ6 varying 0.0001 0.01 1

c0 137 000 78 000 111 000 350 17 5800 dij 300 5 1 000 000 0.00001 10ÿ6 0 0.0001 0.01 1

Fig. 9. (a) Tensile tests on AM1 single crystal superalloy (950�C; _E33 � 10ÿ3 sÿ1, after Espi�e (1996)): c-phase and c0-phase bulk

materials, c=c0 superalloy and prediction of the e�ective response using periodic homogenization; (b) mesh of the unit cell used for the

periodic homogenization analysis.
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of plastic ¯ow in the matrix, the plastic curvature essentially develops at the intersection of c channels, at c0

corners. The additional hardening associated with it leads to subsequent stress redistributions. Accordingly,
the zone where lattice rotation takes place, spreads over a larger region than in the classical case, as shown
in Fig. 11.

5.3. Shear behaviour

Once material parameters have been identi®ed, their relevance can be checked for di�erent loading
conditions. Torsion tests on single crystals are complex and careful measurements must be interpreted using
®nite element computations since the torsion of single crystal tubes leads to a non-homogeneous defor-
mation along the circumference (Nouailhas and Cailletaud, 1995). Considering the simple shear test on a
c=c0 unit cell and using classical crystal plasticity with parameters identi®ed from tensile tests, Nouailhas

Fig. 11. Norm of the lattice rotation vector in the c-phase for E33 � 0:008: Classical case (left) and Cosserat crystal (right, with

H 0 � 1000 MPa).

Fig. 10. Tensile tests on the c=c0 unit cell for di�erent coupling moduli H 0.
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(1997) predicts a response which is too soft when compared to experiment. This is due to the fact that, using
periodicity conditions, the c-phase is strongly sheared, whereas the precipitate remains almost undeformed.
It must be noted that, in the self-consistent scheme used in (Forest and Pilvin, 1996), the c=c0 composite
assembly is embedded in the homogeneous equivalent medium and the pure shear conditions are prescribed
at in®nity which leads to a more complex deformation state in the composite inclusions and to a harder
response. However, we stick here to the periodic assumption and use the same Cosserat model for c and c0

as for the tensile test. The shearing plane is a (0 1 0) plane and the shearing direction is [1 0 0]. A much
stronger response of the material is obtained than with the classical model (Fig. 12). Again, the use of linear
coupling becomes unrealistic and the c0 precipitate is ®nally plastically sheared. Note that, for such an
orientation, a cubic slip would be signi®cantly activated and its introduction is necessary for quantitative
comparison with experiment.

6. Conclusions

The mechanics of generalized continua has been shown to be an appropriate tool to account for size
e�ects in polycrystal and multi-phase materials. Cosserat single crystal plasticity gives rise to Hall±Petch-
type grain size e�ects in periodic polycrystalline aggregates. Various possible homogenization approaches
have led us to formulate an initial boundary value problem of Cosserat elastoviscoplasticity with period-
icity conditions for both the micro-structure and the mechanical ®elds. Rather small polycrystalline samples
have been considered in this work, and the next step will be to carry out large scale parallel computations
on multi-processor computers as has been done in the classical case (Eberl et al., 1998). In the presented
simulations, the local ®elds can be signi®cantly di�erent from those observed in classical crystal plasticity,
due to stress redistributions following additional hardening in the domain of large plastic lattice curvature.
This has been shown also in the case of two-phase materials. Grain boundaries are privileged sites for the
development of a strong lattice curvature. However, a disadvantage of the multi-phase element technique is
that interfaces become serrated surfaces and are not well described. This method can exaggerate some
observed boundary e�ects. A quantitative comparison between this method and the use of properly meshed
grain boundaries is reported in Cailletaud and Quilici (1997). The following question arises: how far is the
response of a rather small periodic aggregate of crystals from the actual response of the polycrystal? The
work of Drugan and Willis (1996) in the case of composite materials requires a rather small amount of
heterogeneities to estimate the overall response of the material, provided that ensemble averaging is used.
This means that several computations must be carried out for various samples (such as A and B in Section

Fig. 12. Simple shear tests on the c=c0 unit cell for the classical case and for Cosserat with H 0 � 1000 GPa.
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4), followed by an averaging procedure. Statistical methods should be applied to quantify the minimal
number of grains in the cell and of realizations that are necessary to obtain a given precision on the overall
response of the polycrystal. The alternative method consists in computing a representative volume element
containing as many grains as possible, which remains a challenging issue for parallel computing. Similarly,
parallel computing should be resorted to for an improved treatment of c=c0 single crystal superalloys, for
which a rather crude mesh has been used in Section 5. It appears in both analyses of grain size e�ect and
precipitate hardening that the linear form (21) is not su�cient for a quantitative agreement with experi-
mental data. A non-linear form displaying a saturation would be more realistic and will require an addi-
tional material parameter. The mechanics of generalized continua is a tool that can be resorted to when the
size of the considered heterogeneities lies still beyond the computational capabilities of discrete simulations
and is such that classical constitutive equations fail. This has been illustrated in the case of single crystal
superalloys for which the additional hardening due to the constrained deformation in the matrix channels
has been captured. The relevance of the prediction has been tested in simple shear and should be applied to
another precipitate size for the same volume fraction.
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